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Cha pter 2
High-Thr oughput Ge nome Assembly, Modeling, and A nnota tion
The sequencing of microbial genomes

containing several thousand genes and the
eventual completion of human and other
model organism genomes is the underlying
driving force for understanding biological
systems at a whole new level of complexity.
There is for the first time the potential to
understand living organisms as whole,
complex dynamic systems and to use large-

scale computation to simulate their behavior.
Modeling all levels of biological complexity
is well beyond even the next generation of
Teraflop computers, but each increment in the
computing infrastructure makes it possible to
move up the biological complexity ladder and
solve previously unsolvable classes of
problems.

The experimen tal (left) and compu tational (right) hierarch ies w ill increasingly become
codependent as the research commu nity models greater biological complexity.

The first step in the biological hierarchy is a
comprehensive genome-based analysis of the
rapidly emerging genomic data. With changes
in sequencing technology and methods, the
rate of acquisition of human and other genome
data over the next few years will be ~100
times higher than originally anticipated.

Assembling and interpreting these data will
require new and emerging levels of
coordination and collaboration in the genome
research community to develop the necessary
computing algorithms, data management and
visualization systems.
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Annotation− the elucidation and
description of biologically relevant features in
the sequence− is essential in order for genome
data to be useful. The quality with which
annotation is done will have direct impact on
the value of the sequence. A t a minimum, the
data must be annotated to indicate the
existence of gene coding regions and control
regions. Further annotation activities that add
value to a genome include finding simple and
complex repeats, characterizing the
organization of promoters and gene families,
the distribution of G+C  content, and tying
together evidence for functional motifs and
homologs.

As complete genomes are sequenced,

the length of DNA comparison strings w ill
change from single genes to entire genomes,
with a concomitant expansion in the time to
compute. In order to look at long-range
patterns of expression, syntenic regions on the
order of 10's of megabases become reasonable
lengths for consideration. While the cycles
needed to run many of these classes of
analysis codes on rapidly increasing data sets
is in itself a significant problem, all of these
must inevitably be run on AL L data
accumulated and in a recurring manner.
Significant computational work is required to
permit the analysis and visualization of long
genomic regions needed for comparative
genomic studies.

The Genome Ch annel Brow ser.  One mechanism for researchers to access and visualize the
results of each day’s analysis of human genome data. The effort makes daily use of multiple
current high-performance computing systems to keep up with current data flow and analysis
and modeling requirements.
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Method s of Genome Seq uence Anal ys is  an d Mod el i ng
A  new  appr oach to sequencing genomes ,

w hole genome shotgun sequencing, becomes 
pos sible if  s mall fr agments of  sequence
gener ated at random can be compar ed to each
other  fast enough to ef fectively deter mine
s equence over lap and fr om this , ass emble the
pieces  into longer  contiguous r egions, or  contigs.

The f irs t s tep in the s equence reconstruction
involves  f inding over laps  betw een each f r agment
and the existing contigs. The pr esence of
s equencing er ror s, natural s equence variations 
between sources  as  w ell as  high r epetitive DN A 
s equence elements make this an extr emely
complex challenge. I f  the computation can be
per for med and other s ignif icant technical
problems  can be over come, this  strategy could
s peed up s equencing of the human genome f rom
about 7 to 3 years .

A s an example, the pr opos ed whole genome
s hotgun str ategy at the I nstitute f or Genome
Res ear ch ( TIG R)  pr oduced 30 million bases  of
D NA  per day in J anuar y of  1998 w hich incr eas ed
to 100 million bas e pairs  per day by mid- year . To
continue to grow  the contiguous  ass emblies of 
s equence that emer ge fr om the r andom s tr ategy
r equir es  that each of  the 200,000 f r agments 
gener ated each day be compar ed in a very
detailed w ay to all previous  contigs. P articularly
in the ear ly phases, over laps w er e r ar e s o initially
200,000 contigs per  day accumulated in the
database. A fter  enough contigs accumulated to
r ealize substantial overlap, the sequence
ass embly r equir ed 4x1012 sequence compar is ons 
per  day, each of  w hich requires  a s ignif icant
f raction of  a s econd on a standar d proces sor.
While comparing new r eads  to exis ting data is 
enough of a problem, periodically the entir e data
s tr uctur e mus t be rebuilt, r equir ing an even lar ger 
number  of F LO Ps  for a calculation that br eaks 
existing contigs down to their under lying
f ragments and r eas sembles  them

S ome of the mos t compute intens ive
proces ses involve the use of  s equence databas e
inf or mation to calculate models  of genes 
contained in the s equence. In the last year or so,
significant growth of expres sed s equence tag

(ES T) collections and new types of hybrid gene
modeling methods that integr ate EST data with
pattern recognition approaches, s uch as G RA IL- 
EXP , have become available. These can be us ed
to produce modeling of the s tructure of genes in
genome s equence data in most cases, but require
significant computing power.

N ucleic acid bas ed r eference s equences 
cur rently number  about 1 million and each
putative exon ( gene coding segment)  mus t be
aligned to this  databas e of ref er ence DN A  pieces .
G RA IL- EX P computes  multiple- gene str uctur es 
on an input D N A sequence using GRA IL
predicted exons , w hich ar e mos t cons is tent with
the know n ESTs/cDN A/ pr otein s equences .

I t achieves  this  goal by modeling the
multiple-gene s tructure pr ediction problem as  a
combinator ial optimization problem and s olving
it by a dynamic pr ogr amming method. The
algor ithm r uns in O (nM+n2K 2)  time, where n is 
the number  of  pr edicted exons  in the given D N A
s equence, M  is the aver age time to f ind all the
ESTt/cDN A/proteins  that match a predicted exon
f rom the s pecif ied databas es , and K  is  the
maximum number of ES T/cDN As /pr oteins an
exon may match.

Typically, it takes about a minute to find all
the matched ESTs in the cur r ent dbEST databas e
( about 1.2 million entr ies ) for  a pr edicted exon.
H ence it may take up to a few days to find all the
matched ESTs f or  all the predicted exons  on a
D NA  of  10 million bas es  long. I f the data r ate
grows  to on the or der  of 100 million bas es per 
day, the calculation would r equir e about a month
of time for  each day’ s data us ing a single 500
megahertz proces sor. This  is  by not a one time
operation− the data needs  to be r eanalyzed
f requently because the under lying databas es  of 
ESTs and cDN As  ar e growing rapidly. A t 100
million bas es  per day, in ten days there is  a
billion bas e pairs  to analyze, and in 100 days  10
billion. To r eanalyze this  data r equir es  about
thr ee days  on a curr ent 1,024 node
s uper computer . Bringing know n protein
s equences in the protein s equence databas e into
the pr oces s  makes the analys is  much more
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useful, but due to the alignment takes  an order of 
magnitude mor e time than the ESTs.
N onetheles s , this should be done routinely,
r equir ing about a month of  time on a cur rent
1024 node s uper computer s.

The pr oblem of par sing the predicted exons 
into genes  that ar e mos t consis tent with know n
ESTs/cDN As /proteins , als o takes  significant
amount of time, which w ill incr ease as  the
number  of matched ESTs/cDN As /pr oteins gets
lar ger . To pr ocess  100 megabases of sequence
w ill r equir e over 1013O ps , ass uming each

predicted exon has  ~ 1000 matched ests/ cDN A/
proteins  in the databas e on average. When the
average number of matched ESTs/cDN A/
proteins  goes  up to 5000, the number  of needed
ops  w ill s cale to over ~1015O ps . I t would also be
des ir able to calculate multiple gene models  f or
each gene, to make each model consis tent with
pos sible s plice variants s ugges ted by the
under lying ES T evidence. This increases the
complexity of this component of  the calculation
to 1017O ps  f or a r elatively fr equently needed
operation.



9

Method s for L arge Scale Comp ari son of Gen ome S eq uen ces
O nce the basic s tr uctur e of genes  has been

modeled, compar ison of new  s equences  agains t
each other  or  exis ting databas e is one of  the most
ess ential and r evealing pr oces s es  in
computational genomics. S uch oper ations r elate
new  s equences  to archival sequences  that may
have meaningf ul infor mation about patter ns in
the s equence and its  function. S uch compar is ons 
are the starting point for  the computation of 
phylogenetic (evolutionar y) tr ees  of  organisms  or
genes , pathogenicity studies  f or public health,
polymorphis m studies  (e.g., of  genetic defects ),
identification of pr otein motif s, model
identification f or  gene r ecognition, model
identification f or  or ganis m class if ication,
f unctional analysis of genomic/ protein
s equences, and exon identif ication.

The analys es and inf er encing often depend
on the quality of the computed multiple s equence
alignments  (M SA 's )  used as input. M SA 's  of 
biological sequences , e.g., DN A , RN A , or 
protein sequences, entail the arr angement of
many ( in s ome cases thous ands)  of  s equences , s o
that cor res ponding positions  ar e aligned in
ver tical columns , with padding char acter s  ( nulls )
added to compens ate f or  length variations  in
s ome s equences.

The most accurate and s ens itive alignments
mus t consider  gaps  in the alignment (ins ertions
and deletions ) and ar e thus rather
computationally intensive. The standar d
algor ithm f or  this  is  S mith- Water man, w hich
uses dynamic pr ogr amming to pr oduce a local
optimal alignment between tw o s equences of
length M  and N, and s cales  as O (M xN ). The
s imple extens ion of these algor ithms  to multiple
s equence alignments of K s equences r equir es 
time O (N K) . For  s equence lengths  in the
thous ands of nucleotides, this  is  barely feas ible
f or  3 s equences , cer tainly not f or  thous ands  of 
s equences. Hence, common practice is  to use
" pr ogr es sive alignments " w hich is  an inef ficient
algor ithm that adds one s equence at a time to the
M SA . This is computationally tr actable, but not
optimal. I t is especially pr oblematic when the

s equences are not closely related, e.g., in
computing the Tr ee of  Lif e.

Recently r ediscovered H idden M ar kov
M odels  ( HM M ) and S tochastic Context Fr ee
G rammars  ( S CF G)  of fer  the pr os pect of better
M SA s, by also modeling higher order   s tr uctur es.
The s imples t ar e H MM s, which are stochas tic
r egular gr ammar s . S CF Gs  ar e mor e complex, but
per mit one to model nes ted s tr uctur es, s uch as  the
s tem and loop s tructures common in RNA . M or e
elabor ate types  of  gr ammar s per mit the modeling
of mor e complex secondary and ter tiary
s tr uctur es . To use thes e models , one mus t f ir s t
estimate the many par ameters  of  the model. The
r es ulting model can then be us ed to "par s e"  the
s equences, and the r esulting pars es  tr ans formed
into multiple s equence alignments . I terative
estimation of  the Hidden M ar kov M odels  entails 
iterative s olution of  computations akin to the
pairw ise dynamic program s equence compar ison
computations. A t each iter ation w e mus t per for m
M  s uch O (N 2)  computations, one f or  each of  the
M  s equences  being aligned, and sum the r esults .

These independent computations  with each
s equence of fers  a clear  target for par allel
computation, followed by a logarithmic
s ummation computation. This is  particular ly tr ue
f or  large s equence collections  such as  the
r ibos omal RNA  alignments. Some researcher s
have constr ucted f ine-grained par allel s ystolic
algor ithms  for the dynamic programming
computations, on s pecialized hardwar e
implementations  or  S I MD  machines. H owever ,
on MI M D machines  ( with gr eater  costs  f or 
inter proces sor communication and s ynchr on-
ization)  coar ser  par titioning of the dynamic
progr amming computations appear s pr eferable.
F ur thermor e, these iter ative computations  often
f ind local optima, r equir ing multiple
computations with dif ferent starting s tates  to f ind
( putative)  global optima.

O ne diff iculty in model es timation f or 
methods like HM M  aris es  f r om the pos sibility of
over- f itting the ver y lar ge number of par ameters 
in these models  (s everal per  s equence pos ition).
Bayes ian methods  have been adopted to smooth
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these parameter  es timates . Bayes ian methods 
have traditionally been diff icult to compute.
S ever al res earcher s have r es or ted to G ibbs 
s ampling methods  to estimate the pos terior
probability dis tribution. Thes e methods entail the
constr uction and s imulation of  a M ar kov chain
w hose equilibrium pr obability dis tr ibution is 
equal to the tar get pos ter ior dis tr ibution. The
G ibbs  sampling computations should be
amenable to par allelization, as suming that
independent par allel random number gener ators 
( P RN Gs )  are available. This is a s ubject of 
r es ear ch activity in the M onte Carlo computation
community, and are available f r om s everal
r es ear ch gr oups .

I n the area of phylogenomics , ins ight fr om
the evolutionar y r elations hips  of  the unknown
protein to other s known is  used to inf er 
s omething about its potential f unction(s ) . In this 
approach, f ir st, homologs  of  the unknown ar e
identified and phylogenetic tr ee is  cons tructed.
K nown functions  of  member s  of the gr oup are
overlaid onto the evolutionary tr ee and the
f unction of  the unknown is  predicted by its 
pos ition in the tr ee relative to its  homologs 
w hose functions  have been char acter ized.

The f irs t s tep in building a phylogenetic tree
is to do a multiple s equence alignment on the
homologous  gr oup of proteins . O nce the
alignment has  been completed tree constr uction
its elf  pres ents  significant computational
challenges .  The evaluation and alignment of
multiple tr ees, which is impor tant f or  attempting
to reconstr uct the r elations hip among or ganis ms
bas ed on s everal trees ref lecting the relationships 
of gr oups of pr oteins , has  been s how n to be
M AX  S N P- har d.

F or  the "Tr ee of  Lif e" computations  that
employ thousands  of r ibos omal RNA  s equences ,
heuris tic methods ar e a necess ity. Typical
computations with ser ial code r un a few hundr ed
hours  on a works tation to accur ately compute a
s ingle backbone tr ee of  only about 100 nodes.
Computation of the backbone tr ee involves  both
dis cr ete optimization over  the space of pos sible
tree topologies  and par ametr ic optimization over 
the s pace of pos sible edge lengths ( duration
between evolutionary events) . Likelihood

computations ar e used to r ank the tr ees. The
likelihood computations  ar e quite expens ive,
involving the computation of  a state-vector  f or
each node in the tree.

D ivide and conquer  s trategies to par tition the
computation of the entire tr ee ar e als o of
inter est− as  the s ubtr ees  corr es pond to gr oups of
r elated or ganis ms. Each s uch taxa is typically of 
par ticular  inter es t to a group of  r esear chers .
Boots trap methods (r es ampling the input data
and r ecomputation) can be to evaluate the
r eliability of the tr ee. Boots trap computations
exhibit obvious  parallelis m, but have pr evious ly
been computational intr actable for problems  on
this s ize. About a thousand new  r RN A s equences
are added to the " Tr ee of  Life"  ever y year.

A  number  of  methods exist for the
computation of phylogenetic tr ees . The ar ea is 
one of  cons ider able ongoing scientif ic
contr overs y. These algorithms dif fer  in the type
of data us ed (distance data between molecules  vs .
aligned sequences) , the exis tence of  global
optimal tr ee cr iteria, the exis tence of an explicit
s tatis tical model for  the evolutionary histor y, etc.
M ethods var y in computation time, their
consis tency ( convergence to cor rect tr ee with
inf inite data), ef ficiency ( rate of  convergence to
cor rect tr ee with finite data) , bias, r obustnes s to
depar tur es  fr om as sumed s tatis tical models of 
evolution.

Robus tness  is  of  par ticular concern because
mos t analys es  as sume (contrary to f act) that
individual sequence pos itions evolve
independently. Eff iciency of  the es timation
technique is par ticular ly impor tant when dealing
w ith phylogenies  of individual genes  f or  which
only r elatively shor t s equences  are available.
S ome s tudies have suggested that available data
on individual genes may not be suff icient f or 
r eliable es timation of gene phylogenies .

M any r es ear cher s  believe that maximum
likelihood es timation ( MLE) (or  per haps r elated
Bayes ian appr oaches) , of f er  the bes t pr ospect f or 
consis tent, eff icient estimation of  phylogenetic
trees . M LE appr oaches  als o f acilitate the
integr ation of multiple types of data (e.g.,
dif fer ent s equences, restr iction fr agment length
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polymorphis m data, etc.). However , M LE ( and
Bayes ian) have f or midable floating point
computation and inter mediate s tor age
r equir ements (e.g., each inter nal node in the tr ee
r equir es  s tor age equal to the s equence length
times  the alphabet s ize). It is  als o w or th noting
that the large M LE phylogeny problems  have
s er ious pr oblems  w ith f loating point
r epres entation of por tions  of the likelihood
computations.

Clear ly, s ome portions of  the computations,
e.g., boots tr apping, clear ly lend themselves to
s imple clus ter- bas ed parallel proces sing. F iner
grained par allelis m, e.g., by decompos ing the
computation of individual tr ees , e.g., on M PP s,
has  yet to be explor ed. Ther e als o appear  to be
oppor tunities  f or par allelis m in the
computationally intensive cons truction of 
multiple s equence alignments , e.g., via H MM s or
S CF Gs .



9

Sequence Comparisons Against Model Protein Families for
Understanding Human Pathology

Searching a protein sequence database for
homologues is a powerful tool for discovering
the structure and function of a sequence.
Amongst the algorithms and tools availabe for
this task, Hidden Markov model (HMM)-based
search methods improve both the sensitivity and
selectivity of database searches by employing
position-dependent scores to characterise and
build a model for an entire family of sequences.

HMMs have been used to analyse proteins
using two complementary strategies. In the first,
a sequence is used to a search a collection of
protein families, such as Pfam, to find which of
the families it matches. In the second approach
an HMM for a family is used to search a
primary sequence database to identify additional
members of the family. The latter approach has
yielded insights into protein involved in both

normal and abnormal human pathology such as
Fanconi Anaemia A, Gaucher disease, Krabbe
disease, polymyositis scleroderma and
disaccharide intolerance II.

HMM-based analysis of the Werner
Syndrome protein sequence (WRN) suggested it
possessed exonuclease activity, and subsequent
experiments confirmed the prediction. Like
WRN, mutation of the protein encoded by the
Klotho gene lead to a syndrome with features
resembling ageing. However, Klotho is
predicted to be a member of the family 1
glycosidase (see figure). Eventually, large-scale
sequence comparisons against HMM models for
protein families will require enormous
computational resources to find these sequence-
function correlations over genome-scale size
databases.

The similarities and differences between two plant and archael members of a family of
glycosidases that includes a protein implicated in ageing. Ribbons correspond to the beta-strands
and alpha-helices of the underlying TIM barrel (red) and family 1 glycosidase domain (cyan).
Amino acid side chains drawn in magenta, yellow and green are important for structure and/or
function. The loop in yellow denotes a region proposed to be important for substrate recognition.
The 2-deoxy-2-fluorglucosyl substrate bound at the active site of one of the enzymes is shown with
carbon atoms in grey, oxygen in red and fluorine in green.
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L ar ge - sc ale  Calc ulations of Phyloge netic  Tr ee s
The calculation of  phylogenetic trees is  a

centr al approach to under s tanding evolutionar y
his tor y, a centr al pr oblem in biology.
P hylogenetic computations  ar e concer ned w ith
the es timation of evolutionary tr ees  and their 
r eliability, and may be done f r om a variety of 
types  of  data: D NA  s equences , r ibos omal RNA 
s equences, pr otein s equences , or pr otein
s tr uctur es .

Cur rently constr uction of  phylogenetic tr ees
commences w ith a multiple sequence alignment
( MS A) , w hich is  then us ed as  input to the
phylogenetic tr ee computation. Clas s ical
dynamic pr ogr amming algor ithms  with
progr ess ive alignments can be used to do the
M SA s. Hidden M ar kov models  can improve the
quality of  the s equence alignments, and
extens ions  to S tochas tic Context Fr ee Gr ammar s 
have the ability to identify RN A secondar y

s tr uctur es  such as  s tem and loop construction.
Estimation of  the phylogenetic tr ee itself

involves  s ear ching the dis cr ete topological s pace
of all trees of  a specified size (exponential in the
number  of leaves ) and estimating the lengths of
each edge in the phylogenetic tree ( i.e. how much
mutation occurr ed) . Recent lar ge phylogenetic
computations have us ed 104 to 105 pr ocess or 
hours  to explor e truncated tree models .
Typically, the r eliability of the tr ees is es timated
by per forming a boots tr ap computation over the
individual sequence pos itions/ columns ). For
lar ge computations , s uch as the tree of lif e,
boots trapping has of ten not been done, due to
lack of computing res ources. S peed and
availability of  computer time are pr es ently major
constr aints  of the ability to do these
computations, as  the availability of  genome
s equence data explodes.

Two h ypoth etical s cen ar ios  and th e path of tr yin g to in f er  th e fu n ction  of two u n ch ar acter ized
gen es  in  each  case is tr aced.  ( A)  A gene family has  undergone a gene duplication that was 
accompanied by f unctional diver gence.  ( B) Gene function has  changed in one lineage.  The genes  ar e
r ef er r ed to by number s representing the s pecies fr om w hich thes e genes come, and letters  repr esenting
dif fer ent genes  within a s pecies.  The thin br anches in the evolutionar y tr ees  corr es pond to the gene
phylogeny and the thick gr ay br anches in A (bottom)  cor r es pond to the phylogeny of the s pecies in
w hich the duplicate genes  evolve in parallel ( as  par alogs ).  D if f er ent s ymbols r epres ent dif fer ent gene
f unctions; gr ay (w ith hatching)  r epr es ents either unknow n or  unpr edictable f unctions.
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T he  N e ed f or High- End Computing f or  Ge nome
Modeling a nd Annotation

The mass ive s cale of  the data f low and challenge
of timely analys is  is  promoting s ignif icant
changes in the organization of  genome analysis 
components  of  the res earch community.  A  small
number  of s pecialized center s, such as  the
G enome A nnotation Consortium, are emer ging
to construct the codes and s ys tems needed to
analyze the data on the s cale needed f or  the next
phase of  the biological r esear ch.  These gr oups
are us ing cur rent super computing capabilities  on
a continuing daily basis to keep up with curr ent

analys is  and modeling needs and are rapidly
r ecognizing the need for new  computing
inf ras tr uctur e in the imminent futur e. Typical
cur rent applications , their cur rent computational
cos t and community r equir ements  are show n in
Table I. Thes e eff or ts ar e mor e and more serving
as a f ocus  for the br oader  r es ear ch community by
providing inter f ace s ys tems to acces s, visualize
and validate the r es ults obtained f r om genome
s cale computational analys is  and modeling.

Table I. Curr ent and Expecte d Sus taine d Capabili ty Re quire ments  for Major 
Com munit y Genomics  Code s

Problem Class Sus taine d Capabili ty 1999 Sus taine d Capabili ty  2000
Sequence  asse mbly >1012 fl ops 1014 fl ops
Binary s equence compari son   1012 fl ops >1014 fl ops
Mul tiple  sequence compa rison   1012 fl ops >1014 fl ops
Gene modeling >1015 fl ops 1017 fl ops
Phylogeny  tr ees   1011 fl ops 1013 fl ops
Protein famil y cla ssifi cation >1010 fl ops 1012 fl ops

Tab le I illustrates many high-priority computational challenges as sociated w ith the analysis, modeling
and annotation of genome data. The fir st is  the basic assembly and interpretation of the sequence data
its elf ( analysis and annotation) as it is produced at incr easing rates over the next five years. There will be
a never- ending race to keep up with this flow, estimated at about 200 million base pairs  per day by some
time in 1999, and to execute the required computational codes to locate and understand the meaning of
genes, motifs , proteins , and genomes as a w hole. Cataloging the flood of genes  and proteins and
understanding their relationship to one another, their var iation between individuals and organisms , and
evolution  represents a number of  very complex computational tasks. Many calculations such as 
multiple sequence alignments , phylogenetic tree gener ation, and pedigree analysis are NP -hard
problems  and cannot be currently done at the scale needed to understand the body of  data being
produced, unless a variety of shortcuts is introduced. Related to this is  the need to compare whole
genomes to each other on many levels both in ter ms of  nucleic acid and pr oteins and on differ ent s patial
scales. Large-scale genome compar isons  will also permit biological inference of str uctur e and function.


